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Computer-Aided Design (CAD)

 Steps in modern digital system design:
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CAD (continued)
 Target technologies that are available:

 Most common: field programmable gate arrays (FPGAs) and application-
specific integrated circuits (ASICs).
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Hardware Description Languages 
(HDLs)
 HDLs can describe a digital system at several different 

levels—behavioral, data flow, and structural.

 HDLs lead naturally to a top-down design methodology.

 Two popular HDLs—VHDL and Verilog.

 Verilog is a HDL used to describe the behavior and / or 
structure of digital systems.
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Compilation, Simulation, and Synthesis of Verilog 
Code 

 Simulation and synthesis process:

 A netlist is a list of required components and their 
interconnections.

5
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History, Need, HDL vs. PL, Simulation Model, 
VLSI Digital Design Flow, SOC Example, 
References

 Session I
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History of Verilog Language
 Verilog HDL

• derived from Latin word veritas (meaning truth), and Greek word logos (meaning 
reason, idea, word)

• Use Verilog to express the truth of your idea

• Verilog originated at Gateway Design Automation in 1983-1984 for simulation of 
digital circuits

• Prabhu Goel, a founder member of Gateway Design Automation, along 
with Phill Moorby released Verilog HDL in 1983

• Enhanced for ASIC design 1987–1989
• Synopsys introduced Verilog logic synthesis 1987
• Cadence acquired Gateway Design Automation in 1990 and puts Verilog HDL in 

the public domain
• Open Verilog International (OVI) formed to maintain Verilog standards

 IEEE standardization – LRM – IEEE-1364 - 1995
• Revision  – IEEE-1364 – 2001 (many enhancements)
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Need for Verilog Language
 Verilog HDL

• Integral part of the Design Process for Digital Circuit Design
• Universally available as a Public Document

• Provide constructs that are natural to a designer

• Flexible and easily extendable by the user

• Support multiple levels of abstraction and modeling

• Allow different design approaches(methodologies)
• top – down
• bottom - up

• Technology and Process Independence
• Ease of Design Exchange and Re-use

• Primarily aimed at Designing once and using a synthesis tool to target 
different implémentations technologies: ASIC, FPGAs, CPLDs

8
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HDL vs. Programming Language
 Instances vs. Functions
 Concurrent vs. Sequential
 Time vs. Execution

9

Hardware

Kernel or OS

Application Programs parser

Code generator

Elaborator/
linker

Executable/
application
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Simulation Model
 A simulator work as an Operating System (Why?)

• Does Scheduling of signal(s) and process(es)
• Advances Simulation Time (Cycle)

 Elaboration and initialization done before simulation

10

Start 
Simulation

Update Signals Execute 
Processes

End Simulation
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Basics of Verilog Language
Gate Level Modeling
Dataflow Modeling

 Session II
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 How can we model a Digital Design

Truth Tables
 Schematic - Most schematic capture  tools can automatically  generate 
a Verilog netlist for simulation

 HDL’s
•VHDL
•Verilog

Tools available
for Verilog HDL
Simulation and
Synthesis

12

Logic Simulation
Verifies correctness of design functionality
Tools

ModelSim : MentorGraphic
NC Sim : Cadence
VCS : Synopsys

Logic Synthesis
Creates a logic circuit from an HDL
Tools

Leanardo Spectrum : MentorGraphic
RC Compiler : Cadence
Design Compiler : Synopsys
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 Gate Level
• Hardware implemented in terms of logic gates with interconnections 
between these gates
• Design at this level is similar to describing the design in terms of gate level 
logical diagram (white box)
• mainly used to model combinational logic design

 Dataflow
• Hardware implemented by specifying the data flow
• Designer is aware of how the data flows between registers (black box)
• Also used to describes data flow between registers known as RTL (Register 
Transfer Level) – a type of dataflow modeling used for the purpose of 
synthesis

13
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Modeling styles (level) in Verilog
 Behavioral

•Used to model the behavior of a design without  the concern 
for the hardware implementation details, i.e., at the abstract 
level or highest level of abstraction

•Designing at this level is very similar to C programming
•Mainly used to model sequential logic design
•Also used to describe RTL (Register Transfer Level) – a type 
of behavioral modeling used for the purpose of synthesis

 Switch Level
• Lowest level of abstraction provided by Verilog with 
switches/transistors having nodes and interconnection 
between them
• experienced designers use this style

14
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Gate Level Modeling

Verilog language

provides basic

gates as built-in

primitives

as shown, 
aka white box

15
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Gate Level Modeling – single gate h/w design

Writing gate level hardware model for an and-gate
• module keyword implements a hardware
• unique name of the hardware (e.g. name of a human being)
• input, output ports or pins declarations
• by convention output ports are declared first
• body of module/hardware represents behavior
• concept of instantiation

module and_gate_2_input(O, A, B);
output O;
input A, B;

and and1(O, A, B);
endmodule

16
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Gate Level Modeling – ports in Verilog
port

• input, output
• inout – bi-directional (can drive, can be driven)

17
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Gate Level Modeling – ports in Verilog

 provides an interface by which a module can communicate with 
its environment 

 if output port has to hold a value then it must be declared as reg

 all port declarations are implicitly declared as wire 

 input/output ports can be declared as reg

 when modules are instantiated within another
• input must always be a wire (net), it can be externally connected 
to a reg or net
• output can be net or reg, it must externally connect to a net
• inout must be a net, it must externally connect to a net

18



EGC455
Design and Verification of System on Chip

9/30/2021

System Verilog 10

SUNY – New Paltz
Elect. & Comp.  Eng. 

Gate Level Modeling – ports in Verilog
•port association – named vs. positional

module mux4_to_1(out, i0, i1, i2, i3, s1, s0); // design module
output out;
input i0, i1, i2, i3, s1, s0;
…………

endmodule
module stimulus; // stimulus module (no ports)

reg IN0, IN1, IN2, IN3, S1, S0; // declare variables to connect 
to inputs

wire OUTPUT; // declare output wire
// instantiate the mux – connected by position or order
mux4_to_1 mymux1(OUTPUT, IN0, IN1, IN2, IN3, S1, S0);
// instantiate the mux – connected by name or any order
mux4_to_1 mymux2(.s0(S0), .s1(S1), .i3(IN3), .i2(IN2),

.i1(IN1), .i0(IN0), .out(OUTPUT));
………..

endmodule
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Gate Level Modeling – two gate h/w design

consider single bit half adder gate level h/w model
// GATE LEVEL HALF-ADDER

module half_adder (s , c , a , b);

output  s , c;      //outputs

input  a , b;        //inputs

//Instantiate logic gates

xor xor1(s , a , b);

and  and1(c , a , b);

endmodule

20

A B C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0
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Gate Level Modeling – concept of a wire
 multiple gate design

 consider single bit full adder gate level h/w model
// GATE LEVEL FULL-ADDER

module full_adder (Cout , S , A , B, Cin);

output  Cout , S;  //outputs

input  A, B, Cin;   //inputs

wire w1, w2, w3; // wires

xor xor1(w1 , A, B);

xor xor2(S, w1, Cin);

and  and1(w2 , w1, Cin);

and  and2(w3 , A, B);

or     or1(Cout, w2, w3);

endmodule

21
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Gate Level Modeling
About wire

•Electrically connect things together i.e. act as an interconnection 
mechanism between different hardware elements

•Can be used on the right-hand side of an expression i.e. it is said to 
be driven

•Can have multiple drivers “Fan-Out”

•Multiple drivers are resolved using resolution table

•Used to tie gates and behavioral blocks together defaults to a logic 
value ‘z’ – high impedance state if no driver or if not connected

22
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Gate Level Modeling
4 value logic system in Verilog

23
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Gate Level Modeling - Instantiation
h/w halfadder/fulladder created by user
half adder instantiated in full adder

module full_adder (co , s , a , b, ci);

output  co , s;  //outputs

input  a, b, ci;   //inputs

wire w1, w2, w3; // wires

half_adder ha1(w1, w2, a, b);

half_adder ha2(s, w3, w1, ci);

or     or1(co, w2, w3);

endmodule

24
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Gate Level Modeling - Instantiation
Create design hierarchy

h/w inside another h/w or design inside design

Higher level design instantiates lower level design

25
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Gate Level Modeling - Instantiation

Design hierarchy creation of a simple CPU block using 
module definition & instantiation from Verilog

26
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Gate Level Modeling – writing a test bench
No input/output port declarations
h/w to be tested is instantiated
 Input declared as reg, output declared as wire
Stimulus is written i.e. input values are changed
Output values are monitored whenever input values 

change, monitor matches printf in “C” and it's called 
a system task represented with the first character as $

 Initial block is written to change initial values at different 
simulation times and to monitor them

Regular or absolute delays are used with # as first 
character

 reg assignment and initialization using bit format creation
Bit format is <length>’<format><value> e.g. 2’b11

27
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Gate Level Modeling – test bench components

reg (registers – storage element)
•Define storage, but not necessarily a data latch
•Can only be changed by assigning value to them
•defaults to logic value ‘x’ – unknown

System task
• $monitor(“time=%d, s=%b, c=%b, a=%b, b=%b”, $time, s, c, a, b);
• %d means decimal format, %b means binary format 
•$monitor is a system tasks for monitoring value changes in s, c, a, b, 
$time represents the current simulation time

•try the testbench without the $ sign and see what happens
• monitor will be treated as any other name
• it will be an elaboration error

28
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Gate Level Modeling – test bench example
module tb_half_adder;

wire  s, c;  //outputs
reg a, b;   //inputs

half_adder ha1(s, c, a, b);
initial
begin
$monitor(“time = %d, s = %b, c = %b, a = %b, b = 

%b”, $time, s, c, a, b);
end
initial begin

#10 a = 1’b0; b = 1’b0;
#10 a = 1’b0; b = 1’b1;
#10 a = 1’b1; b = 1’b0;
#10 a = 1’b1; b = 1’b1;

end
endmodule

29

A B C S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0
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Gate Level Modeling – test bench components
initial block

•Used for initializing values
• Initial block is executed once and only once at the start of 
simulation i.e. at 0 time

•Different initial block executes concurrently
•keywords begin and end are used to enclose multiple 
statements

Regular delay, format, assignment
• #10 a = 1’b0; b = 1’b0;
• #10 represents regular delay (in the unit of simulation 
time)

•1’b0 bit format, b means binary and 1 means 1 bit
•b = 1’b0 means assignment where = is assignment operator

30
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Gate Level Modeling – vcd dump
vcd – stands for value change dump

• Verilog system tasks $dumpfile, $dumpvars, $dumpon, 
$dumpoff, $dumpflush and more are used for getting vcd dump

initial $dumpfile(“myfile.vcd”);

// no arguments, dump all signals in design

initial $dumpvars;

// dump variables in module instance top

// but not signals in modules instantiated under

initial $dumpvars(1, top); 

// dump upto 2 levels of hierarchy below top

initial $dumpvars(2, top);

initial begin

$dumpon; // start dumping

#100000 $dumpoff; // stop dumping at time 100,000

end

31
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Gate Level Modeling – writing a tb for vcd dump
module tb_half_adder;

wire  s, c;  //outputs

reg a, b;   //inputs

half_adder ha1(s, c, a, b);

initial begin

$dumpfile(“half_adder.vcd”);

$dumpvars(0, tb_half_adder);

end

initial begin

#10 a = 1’b0; b = 1’b0;

#10 a = 1’b0; b = 1’b1;

#10 a = 1’b1; b = 1’b0;

#10 a = 1’b1; b = 1’b1;

end

endmodule

32
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Gate Level Modeling – waveform window

33
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Dataflow Modeling
• black box where bitwise operators are used for data flow between 
registers

 keyword assign is used for dataflow modeling

 usage of assignment operator = results in continuous assignment

 bitwise operators

34
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Dataflow Modeling – example
module HalfAdder (s , c , a , b);

output  s , c;
input  a , b;
assign s = a ^ b;
assign c = a & b;

endmodule
module FullAdder (co , s , a , b, ci);

output  co , s;  //outputs
input  a, b, ci;   //inputs
wire ps, pc0, pc1; // wires
HalfAdder ha1(ps, pc0, a, b);
HalfAadder ha2(s, pc1, ps, ci);
assign co = pc0 | pc1;

endmodule

35
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Dataflow Modeling – example
• 2 to 4 line decoder

module decoder_df (F, X, Y);

output [0:3] F;

input X, Y;

assign F[0] = ~X & ~Y,

F[1] = ~X & Y,

F[2] = X & ~Y,

F[3] = X & Y;

endmodule

36

X Y F[0] F[1] F[2] F[3]

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1
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Basics of Verilog Language
Insight into the Language

 Session III

37
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Insight into Verilog language – keywords - 1995
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Insight into Verilog language – keywords 2001

automatic cell
config design
endconfig endgenerate
generate genvar
incdir include
instance library
uwire use

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 
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Insight into Verilog language – bnf, syntax, semantics – example 
module definition

module module name [(port name{, port name})];
[parameter declaration]
[input declaration]
[output declaration]
[inout declaration]
[net declaration]
[reg declaration]
[time declaration]
[integer declaration]
[real declaration]
[event declaration]
[gate declaration]
[UDP instantiation]
[function or task]
[continuous assign]
[specify block]
[initial statement]
[always statement]
[module instantiation]

endmodule



EGC455
Design and Verification of System on Chip

9/30/2021

System Verilog 21

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 

41

Insight into Verilog language – bnf, syntax, semantics

• Insight into Verilog language – bnf, syntax, semantics
 Backus Naur Form

• defines the grammar for the full language

 Syntax
• defines the way you can write HDL as a text file
• If not followed appropriately errors will get reported at compile time

 Semantics
• defines the meaning of language constructs
• defines the multiple meaning of language constructs in different contexts

 ? represents a ‘z’ value

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 
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Insight into Verilog language – etc.
The basic lexical convention used by Verilog HDL are similar to 

those in C programming
All keywords must be in LOWER case i.e. the language is case 

sensitive
White spaces makes code more readable but are ignored by 

compiler
• Blank space(\b) , tabs(\t) , newline(\n) are ignored by the compiler

White spaces are not ignored by the compiler in strings
Comments

• // single line comment style
• /* multi line

comment style */
• Nesting of comments not allowed
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Insight into Verilog language – identifiers
Naming convention

• objects are given different names, names are identifiers
• Identifiers can be build using a combination of letters [A-Z], [a-z], digits [0-

9] (can’t be used as the first character in the identifier), underscore _, $ 
character (can’t be used as the first character in the identifier), max 1024 
characters allowed in an identifier

• white spaces not allowed
• statements are terminated by ;
• e.g.   myid, m_y_id, _myid, myid3 are valid
• $myid, 3my_id are invalid

Escaped identifiers
• They start with a \ and end with a white space
• They can include printable ASCII characters
• E.g. \ 546 , \ .*.& , \ {***} , \ a+b-c , \Gate#3 

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 

44

Insight into Verilog language – numbers
• Representation

• Decimal   d or D
• Hexadecimal  h or H
• Octal    o or O
• Binary    b or B

Value format
• <size>’<radix><format>
• When size not specified default value is 32 bits e.g. ‘bz, ‘h9
• When radix not specified default decimal is taken e.g. 3
• 2’b10, 3’d6, 6’o57, 3’O4, 8’H2d, 32’haA19, 5’B110x0, 6’ozz,  

12’hZXb
• For negative number use – sign e.g. -6’d3, -3’b11
• Underscore can be used to enhance readability e.g. 12’o07_24, 

12’b000_111_010_100
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Insight into Verilog language – numbers

Value format when used in string format for printing
• %h or %H for hexadecimal

• %d or %D for decimal

• %o or %O for octal

• %c or %C for an ASCII character

• %m or %M for hierarchical name

• %v or %V for net signal value and strength

• %s or %S for string

• %t or %T for time

• %f or %F for real value in decimal format (floating point)

• %g or %G real value in either exponential or decimal form whichever is short

• %e or %E for real value in exponent form

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 
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Insight into Verilog language – strings, data types

Strings
• A string is a sequence of characters enclosed by double quotes
• Must be contained on a single i.e. without carriage return
• Strings are treated as a sequence of one-byte ASCII values
• e.g.  string_val = “Hello Verilog”;

Data types
• Net (physical connectivity) – default value z

• wire, wand, wor
• tri, triand, trior
• tri0, tri1, trireg
• supply0 (GND), supply1 VDD (VCC)

• Registers (physical storage elements) – default value x
• reg, integer, real
• time, realtime (time shown in real number format)



EGC455
Design and Verification of System on Chip

9/30/2021

System Verilog 24

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 

47

Insight into Verilog language – data types - net
• “wor” performs “or” operation on multiple driver logic

• “wand” performs “and” operation on multiple driver logic

• “trior” and “triand” perform the same function as “wor” and 
“wand”, but model outputs with resistive loads

net type modeling usage

wire
tri

Net with single driver
Net with multiple driver

wand, triand
wor, trior

Model wired logic function at gate level

tri0, tri1 Pulls up or down the net at gate level

trireg Stores the value at previous level (gate)

supply0
supply1

Constant logic 0 at switch level
Constant logic 1 at switch level

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 

48

Insight into Verilog Language – data types – net
module test_wor();

wor a;

reg b, c;

assign a =  b;

assign a =  c;

initial begin

$monitor(“time = %d a = %b b = %b c = %b", $time, a, b, c);

#10 b = 0;

#10 c  = 0;

#10 b = 1;

#10 b = 0;

#10 c = 1;

#10 b = 1;

#10 b = 0;

#10 $finish;

end

endmodule

wor/trior 0 1 x z

0 0 1 x 0

1 1 1 1 1

x x 1 x x

z 0 1 x z
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49

Insight into Verilog Language – data types – net
module test_wand();

wand a;

reg b, c;

assign a =  b;

assign a =  c;

initial begin

$monitor(“time = %d a = %b b = %b c = %b", $time, a, b, c);

#10 b = 0;

#10 c  = 0;

#10 b = 1;

#10 b = 0;

#10 c = 1;

#10 b = 1;

#10 b = 0;

#10 $finish;

end

endmodule

wand/triand 0 1 x z

0 0 0 0 0

1 0 1 x 1

x 0 x x x

z 0 1 x z

SUNY – New Paltz
Elect. & Comp.  Eng. 
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50

Insight into Verilog Language – data types – net
module test_tri();

tri a;

reg b, c;

assign a =  (b ? c : 1’bz);

initial begin

$monitor(“time = %d a = %b b = %b c = %b", $time, a, b, c);

b = 0; c  = 0;

#10 b = 1;

#10 b = 0;

#10 c = 1;

#10 b = 1;

#10 b = 0;

#10 $finish;

end

endmodule

wire/tri 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x z
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Insight into Verilog language – strength

Data types – net data type strengths

• Verilog allows signals to have logic values and strength values

• Logic values are 0 , 1 , x , z

• Strength values are used to resolve combinations of multiple signals and 
to represent behavior of actual hardware elements as accurately as 
possible

• Driving strengths are used for signal values that are driven on a net 

• Storage strengths are used to model charge storage in trireg type nets

• Strength values can be used to resolve signal contention on nets that 
have multiple drivers

• There are many rules applicable to resolution of contention

SUNY – New Paltz
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Insight into Verilog language – strength
Data types – net data type strengths

• In case of signal contention , value is resolved using logic 
strength

Strength
Level

Strength
Name

Abbreviation Strength
Level

Strength
Type

7 supply1 su1 strongest1 driving

6 strong1 st1 strongest1 driving

5 pull1 pu1 strongest1 driving

4 large1 la1 strongest1 storage

3 weak1 we1 strongest1 driving

2 medium1 me1 strongest1 storage

1 small1 sm1 strongest1 storage

0 highz1 hiz1 weakest1 High impedance
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Insight into Verilog language – strength
Data types – net data type strengths

• In case of signal contention , value is resolved using logic strength

Strengt
h
Level

Strength
Name

Abbreviation Strength
Level

Strength
Type

7 supply0 su0 strongest0 driving

6 strong0 st0 strongest0 driving

5 pull0 pu0 strongest0 driving

4 large0 la0 strongest0 storage

3 weak0 we0 strongest0 driving

2 medium0 me0 strongest0 storage

1 small0 sm0 strongest0 storage

0 highz0 hiz0 weakest0 High impedance

SUNY – New Paltz
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Insight into Verilog language – strength

Data types – net data type strengths
• Multiple signals with same values and different strength 

• If two signals with same known value and different strength drive the same net, 
the signal with higher strength wins

• If two signals with unequal strengths drive the net then signal with stronger 
strength prevails

• When  two signals with opposite value and same strength combine, the 
resulting value is “unknown – x”
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Insight into Verilog language – vectors & arrays

Vectors
• wire [lsb : msb] wire1, wire2,…..;
• reg [lsb:msb] reg1, reg2, ………; 
• wire [15:0] clear ; // 16 bit bus or wire
• reg [3:0] cla ; // 4 bit register , can be assigned cla = 0;

Arrays – memories – allowed only for reg, integer, time
• reg [lsb:msb] mem [upper: lower]
• reg [3:0] mem [31:0] ; // memory consisting of 32, 4 bit registers
• reg mema [7:0] ; // array of 8 – 1 bit registers
• Can’t be assigned mem = 0 ; // illegal must use index

Arrays – multi dimensional arrays (mda’s)
• wire [3:0] mda_wire [7:0][15:0];
• reg [7:0] mda_rega [7:0][7:0][7:0];

SUNY – New Paltz
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Insight into Verilog language – operators

Bitwise
• Operates on each bit of operand
• Result is in the size of the largest operand
• Left extended if the sizes are different
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Insight into Verilog language – operators

Arithmetic
• If any operand contains z or x the result is unknown
• If result and operand are of same size then carry is lost
• Treats vectors as a whole value

SUNY – New Paltz
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Insight into Verilog language – operators
Logical

• Can evaluate to 1, 0, x values

• The results is either true (1) or false (0)
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Insight into Verilog language – operators

Reduction
• Operator work on each bit of the operand
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Insight into Verilog language – operators

Shift
• Shifts the bit of a vector left or right
• Shifted bits are lost
• Arithmetic shift right fills the shifted bits with sign bit
• All others fill the shifted bits by zero
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Insight into Verilog language – operators
Relational

• Evaluates to 1, 0, x
• Result in x if any operand bit is z or x

SUNY – New Paltz
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Insight into Verilog language – operators
Equality

• assign WriteMe = (wr == 1) &&
((a >= 16’h7000) && (a < 16’h8000));
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Insight into Verilog language – operators

Concatenation {}
• wire [3:0] apart;
• wire abit;
• wire [7:0] cbus;
• assign cbus = {apart, 3’b000, abit};

Replication (repeat by a number)
• assign cbus = {4{abit}, 4’b0000};

Conditional  ? :
• assign  y = (sel ? a : b); // mux
• assign y = (s1 ? (s0 ? i1 : i2) : (s0 ? i3 : i4)); // can be nested

SUNY – New Paltz
Elect. & Comp.  Eng. 
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Insight into Verilog language – operators
Concatenation – 4 bit adder
Conditional – 8 bit comparator (>=)

module binary_adder (S, Cout, A , B , Cin);
output [3:0] S;
output Cout;
input [3:0] A, B;
input Cin;
assign {Cout , S} = A + B + Cin;

endmodule

module comparator(Comp, A, B);
output Comp;
input [7:0] A, B;
assign Comp = ((A >= B) ? 1’b1 : 1’b0);

endmodule
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Insight into Verilog language – operators

Operator precedence
+ , - , ! , ~ (unary) Highest Priority
*, /, %, **
+ , - (Binary)
<< , <<<, >>, >>>
< , > , <= , >=
== , !=, ===, !==
& , ~&
^ , ^~ or ~^
|, ~|
&&
||
? : (ternary) Lowest Priority

Parenthesis can be used to override the precedence

SUNY – New Paltz
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Insight into Verilog language – bit-part select

Bit or part select
• reg [15:0] Areg; // 16 bit register
• wire Abit; // a single bit wire
• wire [3:0] Apart; // 4 bit wire
• assign Abit = Areg[1]; // bit select – select one bit
• assign Apart = Areg[7:4]; // select parts of Areg – 4 bits

Width mismatch: What happens in an assignment when LHS is wider 
than RHS

• If RHS is unsigned and left most bit is 1 or 0, then LHS is extended 
with 0

• If left most bit of RHS is Z, then LHS is extended with Z
• If left most bit of RHS is X, then LHS is extended with X
• If RHS is signed, then LHS is sign extended
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Insight into Verilog language – width mismatch

Width mismatch examples
• wire [15:0] y;
• wire [7:0] a = ‘hff; // assigns b’11111111
• wire signed [7:0] b = -1 ; // assigns b’11111111
• wire [7:0] c = 8’bx1010101;
• wire [7:0] d = 8’bz;
• assign y = a; // fills with ‘b0000000011111111
• assign y = b; // fills with ‘b1111111111111111
• assign y = c; // fills with ‘bxxxxxxxxx1010101;
• assign y = d; // fills with ‘bzzzzzzzzzzzzzzzz;

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
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Insight into Verilog language – all about delays

Regular delays
• Delay execution of assignment by specified delay
• assign #d1 y = a & b;

Intra - assignment delays
• Evaluate expression now and delay assignment by specified 

delay
• assign y = #d1 a & b;

Mix of regular and intra-assignment delays
• assign #d1 y = #d2 a & b;

Gate & Net delays
• input x1, x2; wire #5 y; and #3 and1(y, x1, x2);
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Insight into Verilog language – delay example

• Insight into Verilog language – delay example
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Insight into Verilog language – all about delays
Gate or propagation delays

• Rise delay – transition from 0, x, z to 1
• Fall delay – transition from 1, x, z to 0
• Turn off delay – transition from 0, 1, x to z
• Minimum (min), typical (typ), maximum (max) gate delays
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Insight into Verilog language – Gate delay example

module fa (cout, s, A, B, Cin);
input A, B, Cin;
output cout, s;
wire w1, w2, w3;

xor #(5, 4) a1(w1, A, B);
xor #(10) x1(s, w1, Cin);
and #(5, 4) a2(w2, A, B);
and #(5, 4) a3(w3, Cin, w1);
or #(5:6:7) o1(cout, w2, w3);

endmodule

SUNY – New Paltz
Elect. & Comp.  Eng. 

Delays in Verilog

 Types of Delays:
 Inertial delay: intended to model gates and other devices that do not 

propagate short pulses from the input to the output. 
 Transport delay: is intended to model the delay introduced by 

wiring; it simply delays an input signal by the specified delay time.
 Net delay: the time it takes from any driver on the net to change 

value to the time when the net value is updated and propagated 
further.

2-72
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Delays in Verilog (continued)
 Example of inertial and transport delays:

2-73
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Insight into Verilog language – Gate + Net delays

What would the waveform be for the following delays 
at gate level when x1 and x2 has the shown waveform

wire #2 y_tran;

and #3 and1(y_tran, x1, x2);

buf #1 buf1(buf_out, y_tran);

and #3 and2(y_inertial, x1, x2);
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Insight into Verilog language – Gate + Net delays

2 4 6 8 10

2 4 6 8 10

x1

x2

2 4 6 8 10

2 4 6 8 10

2 4 6 8 10

y_inertial

y_tran

buf_out

wire #2 y_tran;
and #3 and1(y_tran, x1, x2);
buf #1 buf1(buf_out, y_tran);
and #3 and2(y_inertial, x1, x2);

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
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Behavioral Modeling
initial and always blocks
initial block - used to initialize behavioral statements
always block - used to describe the functionality using 

behavioral statements
assign values to register data types (reg, integer, real, 

time)
each always and initial block represents a separate process
processes run in parallel and start at simulation time 0
statements inside a process execute either

• sequentially (begin - end)
• concurrently (fork - join)

always and initial blocks cannot be nested
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Behavioral Modeling
initial and always blocks
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Behavioral Modeling
initial and always blocks
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Behavioral Modeling
initial block

• initial blocks execute only once during simulation, starting at time 0, 
does’t execute again

• Multiple behavioral statement inside an initial block must be grouped 
using begin-end or fork-join

• Multiple initial blocks execute concurrently
• initial blocks are generally not synthesizable – mostly used in test-

benches to apply stimulus sequences
• Synthesizable only when used to initialize ROM/RAM contents
• Assignment statements within an initial block

• between begin and end execute sequentially – statement order 
matters

• between fork and join execute concurrently – statement order doesn’t 
matter

SUNY – New Paltz
Elect. & Comp.  Eng. 
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Behavioral Modeling
initial block example
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Behavioral Modeling

 initial block – statements in procedural blocks can be grouped together 
to execute either sequentially or in parallel

 sequential execution
• statements are enclosed within the keywords begin,  end
• statements are processed in the order they are specified
• delays specified are additive

reg x, y;
initial
begin

x = 1’b0;     //execute at t = 0
y = 1’b1;
#10 x = 1’b1;   //executes at t = 10
#15 y = 1’b0;  //executes at t = 25

end

SUNY – New Paltz
Elect. & Comp.  Eng. 
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Behavioral Modeling
 initial block – parallel execution

• statements are enclosed within the keyword fork, join
• all statements are executed concurrently
• ordering of statements is controlled by delay or event control assigned to 

each statement
• if delay is specified, it is relative to the time the block started

reg x, y;

initial

fork

x = 1’b0; y = 1’b0;

#10 x = 1’b1;

#20 y = 1’b0;

#20 x = 1’b0;

#40 y = 1’b1;

join



EGC455
Design and Verification of System on Chip

9/30/2021

System Verilog 42

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 

83

Behavioral Modeling
always block

• Used to model a process that is repeated continuously in a 
digital circuit

• An always block starts at time 0 and executes the behavioral 
statements continuously in an event based looping fashion

• Multiple behavioral statements inside an always block must be 
grouped using begin-end or fork-join

• Assignment statements within an always block
• between begin and end execute sequentially – statement order 

matters (synthesizable)
• between fork and join execute concurrently – statement order 

doesn’t matter (not synthesizable)
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Behavioral Modeling
always block example
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Behavioral Modeling
different methods of generating a clock

module clkgen_25_75_dc;
reg clk;
initial begin

clk = 0;
end
always begin

#25 clk = 0;
#75 clk = 1;

end
endmodule

module clkgen_forever;
reg clk;
initial begin

clk = 0;
end
always begin

#10 clk = ~clk;
end
endmodule

module clkgen(output reg clock);
initial begin

#5 clock = 1;
forever  #50 clock = ~clock;

end
endmodule

SUNY – New Paltz
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Behavioral Modeling
Blocking and non blocking assignments in Verilog
Blocking assignment “=“

• Statement order matter
• Completes the assignment in hand before moving on to the next statement 

meaning “Blocks” the other assignments until the current assignment 
completes

Non blocking assignment “<=“
• Concurrent assignment i.e. it does not “Block” execution of assignments in 

other statements
• Evaluates the RHS at the beginning of a time step
• Schedules the LHS update for the end of the time step
• Results less dependent on order of assignments
• If there are multiple non-blocking assignments to same variable in same 

behavior, latter overwrites previous
• Not allowed in continuous assignments
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Behavioral Modeling
Blocking and non blocking assignments in Verilog - example

initial begin

a = 1;

b = 0;

a = b;    // a = 0;

b = a;    // b = 0;

end

initial begin

a = 1;

b = 0;

a <= b;    // a = 0;

b <= a;    // b = 1;

end

SUNY – New Paltz
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Behavioral Modeling
Execution control in procedural blocks

• initial block executes once starting at time 0
• always block executes continuously starting at time 0

Within procedural blocks how does time advance?
• Delays using # i.e. delay assignment by a specific amount of time 

(not synthesizable) using regular, intra-assignment, zero delays
• Event control using @ i.e. delay assignment until specific event 

occurs (synthesizable)
• edge triggering (sensitive)

 1→0 or 0→1 transition, or edge on signal
 “posedge” 0→1 only
 “negedge” 1→0 only

• level triggering (sensitive)
 use “wait” to delay execution until condition is true e.g. wait (f == 0);
 Not synthesizable – used only in test-benches
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Behavioral Modeling
Execution control in procedural blocks

• Event control using @ i.e. delay assignment until specific event occurs 
(synthesizable)
• edge triggering (sensitive)

 1→0 or 0→1 transition, or edge on signal

 “posedge” 0→1 only
 “negedge” 1→0 only

@ (clk) q=d;   // statement executed whenever signal clk changes value

@ (posedge clk) q=d;  // executed whenever signal clk does a positive 

//  transition (0 to 1, x or z, x to 1, z to 1)

q=@(posedge clk)d;  // d is evaluated immediately and assigned to q

// at positive edge of clk

SUNY – New Paltz
Elect. & Comp.  Eng. 
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Behavioral Modeling
Execution control in procedural blocks

Event control using @ - combinational logic forms
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Behavioral Modeling
Execution control in procedural blocks

Event control using @ - sequential logic forms
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Behavioral Modeling
Modeling a half adder

module Add_half (sum, c_out, a, b);
output  sum, c_out;
reg sum, c_out;
input a, b;

always @ ( a or b )
begin

sum = a ^ b;  // Exclusive or
c_out = a & b;  // And

end
endmodule

a

b
Add_half sum

c_out
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Behavioral Modeling
Modeling a latch and a flip flop using sequential logic forms

module latch(q, d, clk);
output q;
reg q;
input d, clk;

initial
q = 0;

always @ (clk)
begin

q=d;
end

endmodule

module ff(q, d, clk);
output q;
reg q;
input d, clk;

initial
q = 0;

always @ (posedge clk)
begin

q=d;
end

endmodule

d q

clk

d q

clk
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Behavioral Modeling
Execution control in procedural blocks - level triggering (“wait”)

• Provides level sensitive timing control
• Activity flow is suspended if expression is false
• It resumes when the expression is true
• Other processes keep going

module modA (…);

…

always begin

…

wait ( enable ) ra = rb;

…

end

endmodule

module modA (…);

…

always begin

…

wait ( enable ) ra = rb;

…

end

endmodule

begin wait ( !enable ) #10 a = b; end
If the value of enable is 1 when block is 
entered, the wait statement will delay the 
evaluation of the statement (#10 a = b;) 
until the value of enable changes to 0. If 
enable is already 0 when the
block is entered, then the assignment “a 
= b;” is evaluated after a delay of 10 and 
no additional delay occurs.

begin wait ( !enable ) #10 a = b; end
If the value of enable is 1 when block is 
entered, the wait statement will delay the 
evaluation of the statement (#10 a = b;) 
until the value of enable changes to 0. If 
enable is already 0 when the
block is entered, then the assignment “a 
= b;” is evaluated after a delay of 10 and 
no additional delay occurs.



EGC455
Design and Verification of System on Chip

9/30/2021

System Verilog 48

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 

95

Behavioral Modeling
Blocking vs. non blocking assignments – Race condition
When blocking assignments in two or more always blocks are 

scheduled to execute in the same time step , order of execution is 
indeterminated and it can result in a race condition

always @ (posedge clk)
a = b;

always  @ (posedge clk)
b = a;

 Race condition (blocking statements)
 whether a = b or b = a ??
 Recommended : use blocking assignments for modeling 

combinational logic in procedural blocks
 Non blocking statements can be used to eliminate the race condition
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•Behavioral Modeling
Blocking vs. non-blocking – Non-blocking statements can be used 

to eliminate the race condition
At positive edge of clock, the values of all R.H.S variables are 

“read” and R.H.S expressions are evaluated and stored in 
temporary variables

During “write” operation, the values stored in temporary variables 
are assigned to L.H.S variables

Separating the read/write operations ensures that the values of 
registers a and b are swapped correctly

always @ (posedge clk)
a <= b;

always  @ (posedge clk)
b <= a;

 Recommended : use non blocking assignments for modeling 
clocked processes in sequential logic in procedural blocks

always @(posedge clk) begin 
//read operation
temp_a = a;
temp_b = b;
//write operation
a = temp_b;
b = temp_a;
end
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•Behavioral Modeling
Blocking vs. non blocking – examples
Write Verilog code for the following circuits using blocking and non 

blocking assignments
Test these circuits by changing the order of the assignments
Use a synthesis tool to showcase that assignments order does not matter in 

non blocking assignments whereas it does in blocking assignments
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Behavioral Modeling
Blocking vs. non blocking – examples

module design (clock, d, q0, q1);
output q0, q1;
reg q0, q1;
input d, clock;

// blocking                                                               // non blocking
always @ (posedge clock)                                always @(posedge clock)
begin                                                                     begin

q0 = d;                                                                   q0 <= d;
q1 = q0;                                                                 q1 <= q0;

end       // results in one F/F                                    end
endmodule
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Behavioral Modeling
Blocking vs. non blocking – examples

module design (g1, g2, clk, x1, x2, x3);
output g1, g2;
reg g1, g2;
input clk, x1, x2, x3;

// blocking                                                               // non blocking
always @ (posedge clk)                                         always @(posedge clk)
begin                                                                          begin

g2 = x1 & x2;                                                             g2 <= x1 & x2;
g1 = g2 | x3;                                                              g1 <= g2 | x3;

end     // results in one F/F                                          end
endmodule
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Behavioral Modeling
 Procedural statements – if , if else if
 if-else statement conditionally controls a logic operation



if-else implies multiplexing logic like conditional operator (? :)
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Behavioral Modeling
Procedural statements – if , if else if

if without else implies storage

What is the value of Y when Sel = ‘0’?

Verilog register variables hold their value when not driven, 
therefore hardware storage elements are required 

From synthesis point of view, it is a good design practice for 
every if to have an else unless you need storage

A continuous assignment establishes static binding for net 
variables

A procedural continuous assignment “assign – deassign” 
establishes a dynamic binding for register variables
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Behavioral Modeling

Modeling a flip flop – if else - example

module Flip_flop (q, data_in, clk, rst );
output  q;
reg q;
input  data_in, clk, rst;
always @ ( posedge clk )
begin

if ( rst == 1)  // synchronous rst
q = 0;

else
q = data_in;

end
endmodule

data_in q

rst

clk
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Behavioral Modeling
Procedural statements – if else – example
Modeling a comparator2

module comparator2 (c, a, b);
output c;
reg c;
input  a;
input  b;
always @ (a or b)

if (a == b)
c = 1'b1;

else
c = 1'b0;

endmodule
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Behavioral Modeling

Procedural statements – nested if else – example
Modeling an 8 to 3 bit priority encoder

module priority_encoder(code, sel);
output reg [2:0] code;

input [7:0] sel;
always @(sel) begin

if (sel[0]) code <= 3'b000;
else if (sel[1]) code <= 3'b001;
else if (sel[2]) code <= 3'b010;
else if (sel[3]) code <= 3'b011;
else if (sel[4]) code <= 3'b100;
else if (sel[5]) code <= 3'b101;
else if (sel[6]) code <= 3'b110;
else if (sel[7]) code <= 3'b111;
else code <= 3'bxxx;

end
endmodule
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Behavioral Modeling
Procedural statements – nested if else – example
Modeling a 2x1, 4x1 mux

module mux2x1(f, s, w0, w1);
output f;
reg f;
input w0, w1, s;

always @ (*)
begin

if (s == 0)
f = w0;

else
f = w1;

end
endmodule

module mux4x1(f, s, w0, w1, w2, w3);
output reg f;
input w0, w1, w2, w3;
input [1:0] s;
always @ (*)
if (s == 2’b00)

f = w0;
else if (s == 2’b01)

f = w1;
else if (s == 2’b10)

f = w2;
else if (s == 2’b11)

f = w3;
else

f = 1’bx;
endmodule
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Behavioral Modeling
Procedural statements – if else if - Modeling an up counter

// 8 bit up counter
module up_counter(out, enable, clk, reset );

output [7:0] out;
input enable, clk, reset;
reg [7:0] out;
always @(posedge clk)

if (reset) begin
out <= 8'b0 ;

end else if (enable) begin
out <= out + 1;

end
endmodule
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Behavioral Modeling

Procedural statements – case, casex, casez

case construct in Verilog gives another way to organize a 
conditional expression with many alternatives

behaves like nested if - else statement where case items are 
examined in order

simulation is capable of comparing ‘x’s and ‘z’s explicitly

casez treats ‘z’ as don’t cares

casex treats both ‘x’ and ‘z’ as don’t cares

exact match between case expression and case item
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Behavioral Modeling
Procedural statements – case, casex, casez
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Behavioral Modeling
Procedural statements – case, casex, casez – example

module mux4x1 (out, s, a, b, c, d);
output reg out;
input a, b, c, d;
input [1:0] s; 
always @(a or b or c or d or s)
begin

case (s)
2'b00 : out = a;
2'b01 : out = b;
2'b10 : out = c;
default : out = d;

endcase
end

endmodule
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Behavioral Modeling
Procedural statements – case, casex, casez – example

module decoder2to4 (y, w, en);
output reg [3:0] y;
input en;
input [1:0] w; 
always @(*) begin

if (en == 0)
y = 4’b0000;

else
case (w)

2’b00 : y = 4’b1000;
2’b01 : y = 4’b0100;
2’b10 : y = 4’b0010;
2’b11 : y = 4’b0001;

endcase
end

endmodule



EGC455
Design and Verification of System on Chip

9/30/2021

System Verilog 56

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 

111

Behavioral Modeling
Procedural statements – case, casex, casez – example
Only case-based decoder (previous example re-written)

module decoder2to4 (y, w, en);
output reg [3:0]y;
input en;
input [1:0] w; 
always @(*) begin

case ({en, w})
3’b100 : y = 4’b1000;
3’b101 : y = 4’b0100;
3’b110 : y = 4’b0010;
3’b111 : y = 4’b0001;
default : y = 4’b0000;

endcase
end

endmodule
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Behavioral Modeling
Procedural statements – case, casex, casez – example

BCD to 7 segment code converter
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Behavioral Modeling
Procedural statements – case, casex, casez – example

Looking at designing arithmetic blocks – Function codes for 74381 
TTL ALU

Operation Inputs (S2 S1 S0) Functional output

CLEAR 000 0000

B - A 001 B - A

A - B 010 A - B

ADD 011 A + B

XOR 100 A xor B

OR 101 A or B

AND 110 A and B

PRESET 111 1111
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Behavioral Modeling
Procedural statements – case, casex, casez – example

Looking at designing arithmetic blocks
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Behavioral Modeling
Procedural statements – case, casex, casez
case :

• Bit-by-bit comparison
• All bits must match exactly

casex :
• Bit-by-bit comparison
• All z’s and x’s are treated as

don’t cares
• Useful for sparse truth tables

casez :
• Bit-by-bit comparison
• All z’s are treated as don’t cares
• Useful for tri-state signals
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Behavioral Modeling
Procedural statements – case, casex, casez – example

module case_compare;
reg sel;
initial begin

#10 $display(“\n  Driving 0”);
sel = 0;
#10 $display(“\n  Driving 1”);
sel = 1;
#10 $display(“\n  Driving x”);
sel = 1’bx;
#10 $display(“\n  Driving z”);
sel = 1’bz;
#10 $finish;

end

always @ (sel)
case (sel)
1’b0 : $display(“Normal : Logic 0 on sel”);
1'b1 : $display("Normal : Logic 1 on sel");
1’bx : $display(“Normal : Logic x on sel”);
1’bz : $display(“Normal : Logix z on sel”);

endcase
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•Behavioral Modeling
Procedural statements – case, casex, casez – example

always @ (sel)
casex (sel)
1’b0 : $display(“CASEX : Logic 0 on sel”);
1'b1 : $display(“CASEX : Logic 1 on sel");
1’bx : $display(“CASEX : Logic x on sel”);
1’bz : $display(“CASEX : Logix z on sel”);

endcase
always @ (sel)

casez (sel)
1’b0 : $display(“CASEZ : Logic 0 on sel”);
1'b1 : $display(“CASEZ : Logic 1 on sel");
1’bx : $display(“CASEZ : Logic x on sel”);
1’bz : $display(“CASEZ : Logix z on sel”);

endcase
endmodule
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Behavioral Modeling
Procedural statements – for, while, repeat, forever
Looping statements appear inside procedural blocks only
forever

• The forever loop executes continuously i.e. the loop never 
ends

• Normally we use forever statements in initial blocks for clock 
generation and synchronization with other hardware in test-
benches

• One should be very careful in using a forever statement 
because if no timing construct is present in the forever 
statement the simulation could hang
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Behavioral Modeling
Procedural statements – forever – example – named block

parameter half_cycle = 50;

initial
begin : clock_loop

clock = 0;
forever begin
#half_cycle clock = 1;
#half_cycle clock = 0;

end
end

initial
#350 disable clock_loop;

parameter half_cycle = 50;

initial
begin : clock_loop

clock = 0;
forever begin
#half_cycle clock = 1;
#half_cycle clock = 0;

end
end

initial
#350 disable clock_loop;
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Behavioral Modeling

Procedural statements – repeat – example

Executes the loop a fixed number of times

…

w_address = 0;

repeat ( memory_size )

begin

memory [w_address] = 0;

w_address = w_address+1;

end

…

…

w_address = 0;

repeat ( memory_size )

begin

memory [w_address] = 0;

w_address = w_address+1;

end

…

integer count;
initial begin

count = 0;
// repeat the block 128 times
repeat (128)
begin

$display(“count = %d \n” , count);
count = count + ‘1’ ;

end
end 



EGC455
Design and Verification of System on Chip

9/30/2021

System Verilog 61

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 

121

Behavioral Modeling
Procedural statements – while – example
Executes the loop as long as the condition evaluates to true

$display ("DATA = %b, LOCATION 
= %d", data, loc);
end
initial begin
#10 data = 8'b11;
#10 data = 8'b100;
#10 data = 8'b1000;
#10 data = 8'b1000_0000;
#10 data = 8'b0;
#10 $finish;

end
endmodule

$display ("DATA = %b, LOCATION 
= %d", data, loc);
end
initial begin
#10 data = 8'b11;
#10 data = 8'b100;
#10 data = 8'b1000;
#10 data = 8'b1000_0000;
#10 data = 8'b0;
#10 $finish;

end
endmodule

module while_example();
reg [5:0] loc;
reg [7:0] data;
always @ (data or loc) begin
loc = 0;

//data=0, loc=32 (invalid value)
if (data == 0) begin

loc = 32;
end else begin

while (data[0] == 0) begin
loc = loc + 1;
data = data >> 1;

end
end
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Behavioral Modeling
Procedural statements – for – example

module for_example();
integer i;
reg [7:0] ram [0:255];
initial begin
for (i = 0; i < 256; i = i + 1) begin

#10 $display("Address = %g  Data = %h“, i, ram[i]);
ram[i] <= 0; // Initialize the RAM with 0
#10 $display("Address = %g  Data = %h", i, ram[i]);

end
#10 $finish;

end
endmodule
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Insight into Verilog language – parameters
parameter work like a constant in a module or its port list

they are not variables i.e. they assign value to a symbolic name

help in parameterization of a module

can be changed using defparam at module instantiation

instead, if localparams are defined they can not be changed

else if (en) value <= value + 1;
end

endmodule

/* n – bit counter*/
module countern (clk, reset, load, en, d_in, value);

input clk, reset, load, en;
input [WIDTH-1:0] d_in;
output reg [WIDTH-1:0] value;
parameter WIDTH = 8;
initial value <= 0;
always @ (posedge clk or negedge reset)

if (reset)  value <= 0;  //Asynchronous reset 
else begin

if (load) value <= d_in;
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Insight into Verilog language – parameters
module callcountern(clk, reset, receive,, data, frame_cnt);

input clk, reset, receive;

output [11:0] frame_cnt;

countern datac(.clk(clk), .reset(reset), .load(~receive), .en(receive), .d_in(data), 
.value(frame_cnt));

defparam datac.WIDTH = 12;

endmodule

/* 8 bit parity checker */

module parity (y, in);

parameter size = 8;

input [size-1:0] in;

output y;

assign y = ^in;

endmodule
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Insight into Verilog language – parameters
Can be included in module declaration before module port list

module adder #(parameter MSB = 32, LSB = 0)

(output reg [MSB:LSB] sum,

output reg co,

input wire [MSB:LSB] a, b,

input wire ci, ……

)

...

endmodule

/* 8 bit parity checker */
module parity (y, in);

parameter size = 8;
input [size-1:0] in;
output y;
assign y = ^in;

endmodule

module tb_parity;
reg [15:0] data;
wire y;
parity #(16) io0(y, data);
parity #(.size(16)) io1(y, data);

endmodule
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Behavioral Modeling

Procedural statements – function and task
Verilog provides tasks and functions to break up large behavioral designs 

into smaller pieces
Tasks and functions allow the designer to abstract Verilog code that is used 

at many places in design reducing code repetition
Tasks are used in all programming languages, generally known as 

procedures or subroutines and they include Verilog behavioral code only 
enclosed in task…..endtask keywords

Usually, tasks are defined in the module (local) in which they are used
 It is possible to define a task in a separate file also and use the compile 

directive 'include to include the task in the file in which it is instantiated
Tasks have any number of input, output and inout arguments
The order of declaration within the task defines how the arguments are 

passed to the task by the caller
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Behavioral Modeling
 Procedural statements – task
The variables declared within the task are local to that task
 tasks can include timing delay e.g. posedge, negedge, #delay & wait
 tasks can take, drive and source global variables, when no local variables are used
When local variables are used, basically output is assigned only at the end of task 

execution
 tasks can call another task or function
 tasks can be used for modeling combinational & sequential logic
A task must be specifically called with a statement, it cannot be used within an 

expression as a function can
task task_name;

input, output, and inout declarations
local variable declarations
procedural_statement or statement_group

endtask
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Behavioral Modeling
Procedural statements – task - example

task convert;
input [7:0] temp_in;
output [7:0] temp_out;
begin
temp_out = (9/5)*( temp_in + 32);

end
endtask
// task with globals
reg [7:0] temp_out;
reg [7:0] temp_in;
task convert;
begin
temp_out = (9/5)*( temp_in + 32);

end
endtask

module callingtask (temp_a, temp_b, temp_c, temp_d);
input [7:0] temp_a, temp_c;
output [7:0] temp_b, temp_d;
reg [7:0] temp_b, temp_d;
`include "mytask.v"

always @ (temp_a) begin
convert (temp_a, temp_b);

end  
always @ (temp_c) begin

convert (temp_c, temp_d);
end
endmodule
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Behavioral Modeling
Procedural statements – task - example

module bit_counter (data, count);
input [7:0] data;
output [3:0] count; reg [3:0] count;

always @(data) t(data, count);

task t;
input [7:0] a; output [3:0] c; reg [3:0] c; reg [7:0] tmp;
begin c = 0; tmp = a;

while (tmp) begin
c = c + tmp[0];
tmp = tmp >> 1;

end
end

endtask
endmodule

module bit_counter (data, count);
input [7:0] data;
output [3:0] count; reg [3:0] count;

always @(data) t(data, count);

task t;
input [7:0] a; output [3:0] c; reg [3:0] c; reg [7:0] tmp;
begin c = 0; tmp = a;

while (tmp) begin
c = c + tmp[0];
tmp = tmp >> 1;

end
end

endtask
endmodule
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•Behavioral Modeling
Procedural statements – function
A Verilog HDL function behaves the same as a task, but with differences
 functions are defined in the module (local) in which they are used
 It is possible to define functions in separate files and use compile 

directive 'include to include the function in the file in which it is 
instantiated

 functions can not include timing delays e.g. posedge, negedge, # 
delay, that means functions should be executed in "zero" time delay i.e. 
functions can be used for modeling combinational logic only

 functions can call other functions, but can not call tasks
 functions can have any number of inputs but only one output
The variables declared within the function are local to that function
The order of declaration within the function defines how the variables 

are passed to the function by the caller
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Behavioral Modeling
Procedural statements – function

functions can take, drive, and source global variables, when no local 
variables are used

When local variables are used, basically output is assigned only at 
the end of function execution

A function return the value that is assigned to function name

function [size_or_type] function_name;

input declarations

local variable declarations

procedural_statement or statement_group

endfunction
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Behavioral Modeling
Procedural statements – function - example

// function with locals
function myfunction;
input a, b, c, d;
begin

myfunction = ((a+b) + (c-d));
end
endfunction

module  functiocalling(a, b, c, d, e, f);
input a, b, c, d, e ;
output f;
wire f;
`include "myfunction.v"
assign f =  (myfunction (a,b,c,d)) ? e : 0;
endmodulen_
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Behavioral Modeling
Procedural statements – function - example

module word_aligner (w_in, w_out);
input [7:0] w_in;
output [7:0] w_out;
assign w_out = align (w_in);
function [7:0] align;

input [7:0] word;
begin

align = word;
if (align != 0)

while (align[7] == 0)
align = align << 1;

end
endfunction

endmodule

module word_aligner (w_in, w_out);
input [7:0] w_in;
output [7:0] w_out;
assign w_out = align (w_in);
function [7:0] align;

input [7:0] word;
begin

align = word;
if (align != 0)

while (align[7] == 0)
align = align << 1;

end
endfunction

endmodule
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Behavioral Modeling
Procedural statements – function - example

function [31:0] factorial;
input [3:0] operand;
reg [3:0] index;
begin

factorial = operand ? 1 : 0;
for (index = 2; index <= operand; index = index+1)

factorial = index * factorial;
end
endfunction
…
assign res = n * factorial(n);

function [31:0] factorial;
input [3:0] operand;
reg [3:0] index;
begin

factorial = operand ? 1 : 0;
for (index = 2; index <= operand; index = index+1)

factorial = index * factorial;
end
endfunction
…
assign res = n * factorial(n);
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Behavioral Modeling
Procedural statements – function - example
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Behavioral Modeling
Procedural statements – function - example

function [15:0] mult;
input [7:0] a, b;
reg [15:0] r;
integer i;
begin

if (a[0] == 1) r = b;
else r = 0;
for (i = 1; i < 8; i = i + 1) begin

if (a[i] == 1)
r = r + b << i;

end
mult = r;

end
endfunction

function [15:0] mult;
input [7:0] a, b;
reg [15:0] r;
integer i;
begin

if (a[0] == 1) r = b;
else r = 0;
for (i = 1; i < 8; i = i + 1) begin

if (a[i] == 1)
r = r + b << i;

end
mult = r;

end
endfunction
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Generate - for
Work as a parallel block therefore allows following

• instance creation, continuous assignment
• initial and always blocks, local variable declaration
• nesting of generate is allowed for all – generate - for, if, case

module RCAdder (a, b, ci, s);
parameter N = 64;
input [N-1:0] a, b;
input ci;
output [N-1:0] s;
wire [N:0] pc;
genvar i;
generate for (i=0; i<N; i=i+1) begin : u1

fulladder inst[i](a[i], b[i], pc[i], s[i], pc[i+1]);
end

endmodule
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Conditional Generate - if
Select at most one generate block from a set of alternative 

generate blocks based on constant expression

module multiplier(a,b,product);
parameter a_width = 8, b_width = 8;
localparam product_width = a_width + b_width;
input [a_width-1:0] a;
input [b_width-1:0] b;
output [product_width-1:0] product;
generate

if ((a_width < 8 || b_width <8) ) 
begin : mult

cla_multiplier #(a_width, b_width) u1(a,b,product);
end
else begin : mult

wallace_multiplier #(a_width, b_width) u1(a,b,product);
end

endgenerate
endmodule
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Conditional Generate - case
Select at most one generate block from a set of alternative 

generate blocks based on constant expression

generate
case (WIDTH)

1: begin : adder
adder_1bit x1(co, sum, a, b, ci);

end
2: begin : adder

adder_2bit x1(co, sum, a, b, ci);
end

default: begin : adder
adder_cla #(WIDTH) x1(co, sum, a, b, ci);

end
endcase

endgenerate
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System Tasks
These tasks are used for generating input, output during simulation and they 

start with a $ sign

For displaying text on screen during simulation
• $display – display text only once whenever this is executed
• $strobe – display text only once every time this is executed at the very end of 

the current simulation time
• $monitor – executes and displays every time if any of its parameter changes

For displaying current simulation time
• $time – as a 64 bit integer
• $stime – as a 32 bit integer
• $realtime – as a real number

For generating random numbers
• $random – a seed may be given otherwise seed is derived from system clock y
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System Tasks
Controlling the simulation

• $reset – resets the simulation back to time 0
• $stop – halt the simulation and put it in interactive mode for user to enter the 

commands
• $finish – exit the simulation completely and return to OS

Scoping in case of hierarchical design
• $scope – set the current hierarchical scope to the one provided as an 

argument to this command, if not then top scope is taken by default –
simulator specific

• $showscope – this is again simulator specific and may show list of all the 
modules, tasks, blocks in the current scope

For enabling value change dump (vcd)
• $dumpfile, $dumpvars, $dumpon, $dumpoff, $dumpall

For file input, output
• $fopen, $fdisplay, $fmonitor, $fwrite, $fstrobe
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Compiler Directives
Are mainly used for controlling the compilation of  Verilog code
A directive is effective from the point it is declared till the point 

another directive declaration arrives which overrides it
 `include – this directive is to support in-lining of  Verilog code 

from another file in the place where it is declared
 `define – for defining text Macros
 `undef – for removing or disabling the text macros created by 

`define or the +define+ command line option
 `ifdef – for optionally including lines of  Verilog code in the source 

code i.e. if a macro has been defined then the Verilog code within 
`ifdef will get compiled

 `else, `elseif – if the `ifdef condition is false then the Verilog code in 
`else or `elseif will get compiled

 `endif – for ending the `ifdef, `else combination in Verilog code
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Compiler Directives - example
module ifdef ();

initial begin
`ifdef FIRST

$display("First code is compiled");
`else
`ifdef SECOND 

$display("Second code is compiled");
`else

$display("Default code is compiled");
`endif

`endif
$finish;

end
endmodule

module ifdef ();

initial begin
`ifdef FIRST

$display("First code is compiled");
`else
`ifdef SECOND 

$display("Second code is compiled");
`else

$display("Default code is compiled");
`endif

`endif
$finish;

end
endmodule
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Compiler Directives – `timescale
 `timescale <time_unit> / <time_precision>
 time_unit - the time multiplier for time values
 time_precision - minimum step size during simulation - determines 

rounding of numerical values
Allowed unit/precision values: 

{1| 10 | 100, s | ms | us | ns | ps}

 Example: precision 10 ps / 1 ps
`timescale 10 ps / 1ps
nor #3.57 (z, x1, x2);
nor delay used = 3.57 x 10 ps = 35.7 ps => 36 ps

 Different timescales can be used for different sequences of modules
 The smallest time precision determines the precision of the 

simulation
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Switch Level Modeling

MOS switches
• nmos, pmos
• cmos

Buffer and Not, Tristated gates
• buf, not
• bufif0, bufif1, notif0, notif1

Pullup and Pulldown gates
• pullup
• pulldown
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Switch Level Modeling
MOS switches

• nmos, pmos
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Switch Level Modeling
MOS switches

• Creating not switch

module not_switch (out, in); 

output out; 

input in; 

supply1 vdd; 

supply0 gnd; 

pmos p1(out, vdd, in);

nmos n1(out, gnd, in);

endmodule
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Switch Level Modeling
MOS switches

• Creating mosfet nor switch
module fet_nor2(out, in_a, in_b);

input in_a, in_b;

output out;

wire wp;

supply1 vdd;

supply0 gnd;

pmos p1 (wp, vdd, in_a);

pmos p2 (out, wp,  in_b);

nmos n1 (out, gnd, in_a);

nmos n2 (out, gnd, in_b);

endmodule
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Switch Level Modeling
MOS switches

• Creating mosfet nand switch

module fet_nand2( Y, A, B );
output Y;
input A, B;                                             
supply0 GND;
supply1 VDD;
wire w;
pmos p1(Y, VDD, A);
pmos p2(Y, VDD, B);
nmos n1(w, GND, B);

nmos n2(Y, w, A);
endmodule
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Switch Level Modeling
MOS switches

• Creating mosfet and4 switch

module fet_and4 (out, a, b, c, d);

input a, b, c, d;

output out;

wire out_nand1, out_nand2;

fet_nand2 g1 (out_nand1, a, b),

g2 (out_nand2, c, d);

fet_nor2 g3 (out, out_nand1, out_nand2);

endmodule
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Switch Level Modeling
MOS switches

• CMOS switch

module transmission_gate_switch (data, out, p_ctrl, n_ctrl);
inout data;
inout out;      
input p_ctrl;
input n_ctrl;

//Syntax: keyword unique_name (drain, source, gate);
pmos p1 (out, data, p_ctrl);
nmos p2 (out, data, n_ctrl);

endmodule
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Switch Level Modeling

Buffer and Not
• buf, not
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Switch Level Modeling
Buffer and Not - tristated gates

• bufif0, bufif1, notif0, notif1

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 

154

Switch Level Modeling
Buffer and Not - tristated gates

• Creating a 2x1 mux using tristated buffers

module mux_2_1 (mux_out, p0, p1, s);

input p0, p1, s;

output mux_out;

bufif0 bf0(mux_out, p0, s);

bufif1 bf1(mux_out, p1, s);

endmodule
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Switch Level Modeling
Pullup and Pulldown gates

• pullup - data is connected to ‘logic 1’
• pulldown - data is connected to ‘logic 0’

module fet_nor3(out, in_a, in_b, in_c);

input in_a, in_b, in_c;

output out;

supply0 gnd;

nmos na (out, gnd, in_a),

nb (out, gnd, in_b),

nc (out, gnd, in_c);

pullup (out);

endmodule
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Design Examples

 Session IV

156
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ALU – Arithmetic Logic Unit

A
B

4:1
MUX

F

Cout0

S1 S0

ADD

A
B

A
B

A
B
C

Block diagram for 1-bit ALU

Control 
signal

S1    S0

Operation

0       0 A and B

0       1 A or B

1       0 A xor B

1       1 A add B
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Design Examples
• ALU – Arithmetic Logic Unit

// 1-bit alu
module alu(F, CO, S0, S1, A, B, C);
output F, CO;
input S0, S1, A, B, C;
wire w, x, y, z;
and a1(w, A, B);
or o1(x, A, B);
xor x1(y, A, B);
fulladder f1(z, CO, A, B, C);
mux m1(F, S0, S1, w, x, y, z);
endmodule

// 1-bit alu
module alu(F, CO, S0, S1, A, B, C);
output F, CO;
input S0, S1, A, B, C;
wire w, x, y, z;
and a1(w, A, B);
or o1(x, A, B);
xor x1(y, A, B);
fulladder f1(z, CO, A, B, C);
mux m1(F, S0, S1, w, x, y, z);
endmodule

// 1-bit alu
module mux(f, s0, s1, w, x, y, z);
output f;
input s0, s1, w, x, y, z;
assign f = s1 ? (s0 ? x : y) : (s0 ? w : 
z);
endmodule

module fulladder(z, c0, a, b, c);
output z,c0;
input a,b,c;
assign z = a ^ b ^ c;
assign c0 = (a&b) | (b&c) | (c&a);
endmodule

// 1-bit alu
module mux(f, s0, s1, w, x, y, z);
output f;
input s0, s1, w, x, y, z;
assign f = s1 ? (s0 ? x : y) : (s0 ? w : 
z);
endmodule

module fulladder(z, c0, a, b, c);
output z,c0;
input a,b,c;
assign z = a ^ b ^ c;
assign c0 = (a&b) | (b&c) | (c&a);
endmodule
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Design of an ALU using Case 
Statement

// 74381 ALU 
module alu(s, A, B, F); 
input [2:0] s; 
input [3:0] A, B; 
output [3:0] F; 
reg [3:0] F; 
always @(*) 
case (s) 
0: F = 4'b0000; 
1: F = B - A; 
2: F = A - B; 
3: F = A + B; 
4: F = A ^ B; 
5: F = A | B; 
6: F = A & B; 
7: F = 4'b1111; 
endcase
endmodule

S Function

0 Clear

1 B-A 

2 A-B

3 A+B

4 A XOR B

5 A OR B

6 A AND B

7 Set to all 1’s
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Finite  State Machines (FSM)
 State diagrams are  representations of Finite  State Machines (FSM)

 Mealy FSM
 Output depends on input and  state
 Output is not synchronized  with clock
 can have temporarily  unstable output

 Moore FSM
 Output depends only on state

25

Mealy  
FSM

Moore  
FSM
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Finite State Machines

• Finite State Machines (FSMs) are a useful abstraction for  sequential 
circuits with centralized “states” of operation

• At each clock edge, combinational logic computes outputs and
next state as a function of inputs and present state

Combinational  
Logic

Flip-
Flops

Q D

CLK

inputs

+

present  
state

outputs

+

next  
state

n n
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Two Types of FSMs

outputs
yk = fk(S)

inputs
x0...xn

Comb.  
Logic

n

Flip-
Flops

Comb.  
Logic

D Q
n

CLK

Moore and Mealy FSMs : different output generation

• Moore FSM:
next  
state

S+

inputs
x0...xn

present state S

• Mealy FSM:

S

Comb.  
Logic

CLK

Flip-
Flops

Comb.  
LogicD Q

S+

n

n

outputs
yk = fk(S, x0...xn)

direct combinational path!



EGC455
Design and Verification of System on Chip

9/30/2021

System Verilog 82

SUNY – New Paltz
Elect. & Comp.  Eng. 
SUNY – New Paltz
Elect. & Comp.  Eng. 

163

FSM - Mealy Machine
Outputs based on state and present inputs

S
ta

te
 R

eg
is

te
r

C1
x(t)

s(t+1)

s(t)

z(t)

clk

init

present
state

next
state

C2
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FSM – Mealy Machine
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FSM – Mealy Machine
Designing with DFF’s
Lets assume that following is given

DA(A,B,X) =  m(2,4,5,6)

DB(A,B,X) =  m(1,3,5,6)

Y(A,B,X) =  m(1,5)
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FSM – Mealy Machine
DA(A,B,X) =  m(2,4,5,6)
DB(A,B,X) =  m(1,3,5,6)
Y(A,B,X) =  m(1,5)
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FSM – Mealy Machine
Use K-Map technique to reduce the equations

DA(A,B,X) =  m(2,4,5,6)

DB(A,B,X) =  m(1,3,5,6)

Y(A,B,X) =  m(1,5)

DA = AB + BX

A
BX

00 01 11 10
0 1
1 1 1 1

A

DB = AX + BX + ABX

00 01 11 10
0 1 1
1 1 1

BX

A
BX

Y = BX
00 01 11 10

0 1
1 1
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FSM – Mealy Machine
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Finite State Machine in Verilog
 Two approaches:

1. Use two always blocks:
a. One always block represents combinational: Generates next 

state and output.
b. The other always block represent sequential part of the circuit

Module sample_Design (x, clk, z);
input x, clk;
output reg z;
reg [2:0] state;
parameter S0=2'b00, S1=2'b01,

S2=2'b10,  S3=2'b11;
Reg [2:0] nextstate;
always @(state or x)
begin 
case(state)

S0:  being
if (x==1’b0)
begin

z = 1’b1;
nextstate = S1;

end
end

S1: begin 
.
.
.
default: begin // should not occur
end 

endcase
end

always @(postedge clk)
begin  

state <= next state;
end

SUNY – New Paltz
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Finite State Machine in Verilog
2. Use a single always block. 

Module sample_Design (x, clk, z); 
input x, clk;

output reg z;
reg [2:0] state;
parameter S0=2'b00, S1=2'b01,

S2=2'b10,  S3=2'b11;
always @(postedge clk) 
begin 
case(state)

S0:  being
if (x==1’b0)

state <= S1;
else

statet <=S2;
end

S1: begin 
. 

.

.
default: begin // should not occur
end 

endcase
end

Assign z = (state == S0 && x == 1’b0) || …

.
endmodule
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Sequence Detector

 Circuit specification:
 Design a circuit that outputs a 1 when three consecutive  1’s have been 

received as input and 0 otherwise.

 FSM type
 Moore or Mealy FSM?
 » Both possible
 » Chose Moore to simplify diagram

 State diagram:
 » State S0: zero 1s detected
 » State S1: one 1 detected
 » State S2: two 1s detected
 » State S3: three 1s detected

SUNY – New Paltz
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Sequence Detector: Verilog (Moore FSM)
module seq3_detect_moore(x,clk, y);
// Moore machine for a three-1s sequence detection
// second approach is used

input x, clk;
output y;
reg [1:0] state;
parameter S0=2'b00, S1=2'b01, S2=2'b10,  S3=2'b11;

// Define the sequential block  
always @(posedge clk)

case (state)
S0: if (x) state <= S1;

else state <= S0;
S1: if (x) state <= S2;

else state <= S0;
S2: if (x) state <= S3;

else state <= S0;
S3: if (x) state <= S3;

else state <= S0;
endcase

// Define output during S3  
assign y = (state == S3);
endmodule
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Sequence Detector: Verilog (Mealy FSM)
module seq3_detect_mealy(x,clk, y);
// Mealy machine for a three-1s sequence detection  
// First approach is used
input x, clk;
output y;  reg y;
parameter S0=2'b00, S1=2'b01, S2=2'b10, S3=2'b11;
// Next state and output combinational logic
// Use blocking assignments "="  
always @(x or pstate)
case (pstate)
S0: if (x) begin nstate = S1; y = 0; end

else begin nstate = S0; y = 0; end
S1: if (x) begin nstate = S2; y = 0; end

else begin nstate = S0; y = 0; end
S2: if (x) begin nstate = S3; y = 1; end

else begin nstate = S0; y = 0; end
S3: if (x) begin nstate = S3; y = 1; end

else begin nstate = S0; y = 0; end
endcase

// Sequential logic, use nonblocking assignments "<="  
always @(posedge clk)

pstate <= nstate;
endmodule

S1

S2S3

0/0 1/0

1/1

0/0
0/0

1/1

0/0

S0    1/0
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FSM – Mealy Machine – sequence 1101 detector

got1start got11 got110
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FSM – Mealy Machine – sequence 1101 detector

module seq1101_mealy(y, x, RESET);
output y; reg y;
input x, RESET;
parameter start = 2'b00, got1 = 2'b01,

got11 = 2'b11, got110 = 2'b10;
reg [1:0] Q, D;   // state, next state logic
reg CLK;
initial CLK <= 0;
always

#10 CLK <= ~CLK;
always @(x or Q)
begin
y <= 0;
case(Q)

start: D <= x ? got1  :  start;
got1:  D <= x ? got11 : start;
got11: D <= x ? got11 :  got110;

module seq1101_mealy(y, x, RESET);
output y; reg y;
input x, RESET;
parameter start = 2'b00, got1 = 2'b01,

got11 = 2'b11, got110 = 2'b10;
reg [1:0] Q, D;   // state, next state logic
reg CLK;
initial CLK <= 0;
always

#10 CLK <= ~CLK;
always @(x or Q)
begin
y <= 0;
case(Q)

start: D <= x ? got1  :  start;
got1:  D <= x ? got11 : start;
got11: D <= x ? got11 :  got110;

got110 : if (x) begin
D <= got1; y <= 1;
end

else begin
D <= start; y <= 0;

end
default : D <= 2'bxx;

endcase
end
always @(posedge CLK or negedge RESET)
begin

if (~RESET)
Q <= 0;

else
Q <= D;

end
endmodule

got110 : if (x) begin
D <= got1; y <= 1;
end

else begin
D <= start; y <= 0;

end
default : D <= 2'bxx;

endcase
end
always @(posedge CLK or negedge RESET)
begin

if (~RESET)
Q <= 0;

else
Q <= D;

end
endmodule
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Design Examples

module seq1101_moore(y, x, CLK, RESET);
output y;
reg y;
input x, CLK, RESET;
parameter start = 3'b000, got1 = 3'b001,
got11 = 3'b011, got110 = 3'b010;
got1101 = 3’b110;
reg [2:0] Q;   // state variables
reg [2:0] D;   // next state logic output
// next state logic
always @(x or Q) begin
case(Q)

start: D = x ? got1  : start;
got1:  D = x ? got11 : start;
got11: D = x ? got11 : got110;
got110: D = x ? got1101 : start;

module seq1101_moore(y, x, CLK, RESET);
output y;
reg y;
input x, CLK, RESET;
parameter start = 3'b000, got1 = 3'b001,
got11 = 3'b011, got110 = 3'b010;
got1101 = 3’b110;
reg [2:0] Q;   // state variables
reg [2:0] D;   // next state logic output
// next state logic
always @(x or Q) begin
case(Q)

start: D = x ? got1  : start;
got1:  D = x ? got11 : start;
got11: D = x ? got11 : got110;
got110: D = x ? got1101 : start;

got1101: D = x ? got11 : start;
default : D = 3’bxxx;

end
// state variables
always @(posedge CLK or

negedge RESET)
begin

if (~RESET)
Q = 0;

else
Q = D;

end
// output logic
always @ (Q)

y = Q[2];
endmodule

got1101: D = x ? got11 : start;
default : D = 3’bxxx;

end
// state variables
always @(posedge CLK or

negedge RESET)
begin

if (~RESET)
Q = 0;

else
Q = D;

end
// output logic
always @ (Q)

y = Q[2];
endmodule
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Example: Light Switch

0/LIGHT
= 0

1/LIGHT
= 1

BUTTON=1

BUTTON=0 BUTTON=0

• State transition diagram
BUTTON=1

PS NS
Q Butto

n
Q & D Light

0 0 0 0
0 1 1 0
1 0 1 1
1 1 0 1

D         Q   

Q

Q

Button

D = Q’B + QB’
Light = Q

Note: B  = Button

Light

D Q LIGHTBUTTON
CLK

0

1

Register
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Example: Light Switch

LIGHT
= 0

LIGHT
= 1

BUTTON=1

BUTTON=0 BUTTON=0

• State transition diagram

BUTTON=1

D Q LIGHTBUTTON
CLK

0

1

Combinational logic

Register

• Logic diagram
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Clocked circuit for on/off button

output light;  reg light;
always @ (posedge clk)  begin
if (button) light <= ~light;

module onoff(clk,button,light);  
input clk,button;

end  
endmodule

D Q LIGHTBUTTON
CLK

0

1 Q
D

LE

CLK

LOAD-ENABLED REGISTERSINGLE GLOBAL CLOCK
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Example: 4-bit Counter

+1

clk

count
44

• Logic diagram

# 4-bit counter
module counter(clk, count);  
input clk;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin  
count <= count+1;

End
endmodule

• Verilog
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Example: 4-bit Counter

1

0

+1

enb clk

count
44

• Logic diagram

# 4-bit counter with enable  
module counter(clk,enb,count);
input clk,enb;  
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin  
count <= enb ? count+1 : count;

• Verilog

Could I use the following instead?
if (enb) count <= count+1;

end
endmodule
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Example: 4-bit Counter

0 1
1   

0
0

+1

enb clr clk

count
44

• Logic diagram

# 4-bit counter with enable and synchronous clear
module counter(clk,enb,clr,count);  
input clk,enb,clr;
output [3:0] count;
reg [3:0] count;

always @ (posedge clk) begin
count <= clr ? 4’b0 : (enb ? count+1 : count);  

end
endmodule

• Verilog
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4-bit Shift Register with Reset

module srg_4_r_v (CLK, RESET, SI, Q,SO);  
input CLK, RESET, SI;
output [3:0] Q;  
output SO;
reg [3:0] Q;
assign SO = Q[3];
always@(posedge CLK or posedge RESET)  begin
if (RESET)
Q <= 4'b0000;

else
Q <= {Q[2:0], SI};
end

endmodule

SUNY – New Paltz
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4-bit Binary Counter with Reset

module count_4_r_v (CLK, RESET, EN, Q, CO);
input CLK, RESET, EN;
output [3:0] Q;  
output CO;
reg [3:0] Q;
assign CO = (count == 4'b1111 && EN == 1’b1) ? 1 : 0;  
always@(posedge CLK or posedge RESET)
begin
if (RESET)
Q <= 4'b0000;
else if (EN)
Q <= Q + 4'b0001;
end

endmodule
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Advanced features in Verilog

 Session V

185
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User Defined Primitives
Verilog has built-in gates, transmission gates and switches

They are Verilog provided built in primitives

This is a rather small number of primitives

 If we need more such simple or complex primitives then Verilog provides 
facility for writing them as UDP’s or simply User Defined Primitives

The UDP’s are self contained and are instantiated like gate level primitives

One can write combinational as well as sequential UDP’s

UDPs cannot be defined inside the modules i.e. can only be instantiated 
inside the module

One of their applications is to model primitives of ASIC libraries

UDP’s begin with keyword primitive and end with endprimitive

Ports declaration follow primitive keyword just like module
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User Defined Primitives – when to use UDP’s
UDPs description is technology independent

UDPs cannot model timing parameters, hence functionalities that 
need to model timing parameters should be modeled as module

UDP is a lookup table, hence as the number of inputs increase table 
entries grows exponentially which in turn increases the memory 
requirement, therefore do not design UDP’s with large number of 
inputs

UDP state table should be specified as completely as possible because 
if certain combination of inputs is not specified, the default output for 
that combination will be ‘x’ primitive udp_syntax (a, b, c, d);

output a;
input b,c,d;
// UDP function code here
endprimitive
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User Defined Primitives – some rules to follow
UDPs can take only scalar input terminals (1 bit)

Multiple inputs are permitted

Can have only 1-bit scalar output

Output terminal must appear first in terminal list

Multiple output terminals are not allowed

 Inputs/Outputs are declared with keyword input, output

 In sequential UDPs output is declared as reg

Do not support inout ports

The state in a sequential UDP can be initialized with an initial 
statement otherwise it is optional

State table defines the state of output under different input conditions

State table entries can contain values ‘0’ , ‘1’ or ‘x’

 ‘z’ values passed to UDP are treated as x
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User Defined Primitives – Symbols
Symbols used for level, edge transition specification in UDP table

Symbol Meaning Explanation

? 0 or 1 or x Cannot be specified in an output field

b 0 or 1 Cannot be specified in an output field

- no change in     state 
value

Can be specified only in an output field of a
sequential UDP

r (01) Rising edge of an input signal

f (10) Falling edge of an input signal

p (01) or (0x) or (x1) or 
(1z) or (z1)

Potential rising edge of a signal

n (10) or (1x) or (x0) or
(0z) or (z0)

Potential falling edge of a signal

* (??) Any value change in signal
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User Defined Primitives – example combinational
primitive mux_21_udp(out, sel, i0, i1);
output out; 
input sel, i0, i1;
table

// sel i0 i1   out
0  0  ?  : 0 ; // 1
0  1  ?  : 1 ; // 2
1  ?  0  : 0 ; // 3
1  ?  1  : 1 ; // 4
?  0  0  : 0 ; // 5
?  1  1  : 1 ; // 6

endtable
endprimitive
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User Defined Primitives – example sequential
// Latch with active low clock

primitive latch_udp(q, clock, data) ;

output q; reg q ;

input clock, data;

table

// clock data   q   q+ 

0    1    : ? : 1 ;

0    0    : ? : 0 ;

1    ?    : ? : - ; // - = no change

endtable

endprimitive
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User Defined Primitives – example sequential
// Flip flop with rising clock
primitive dff_udp (q, clk, d);
output q; reg q;
input clk, d;
table

// clk d : q : q+
r  0 : ? : 0 ;
r  1 : ? : 1 ;
f  ? : ? : - ;
?  * : ? : - ;

endtable
endprimitive
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User Defined Primitives – example sequential
// Flip flop with rising clock and reset
primitive dff_reset_udp (q, d, clk, rst);

output q; reg q;
input clk, rst, d;
initial q = 0;     // powers up in reset state
table
// d  clk rst :   q     :  q+

?   ?     0    :    ?     :  0;
0   r     1    :    ?     :  0;
1   r     1    :    ?     :  1;
?   n    1    :    ?     :  -;
*   ?    1    :    ?     :  -;
?   ?    p    :    ?     :  -;

endtable
endprimitive


